Assessment of Spatio-Temporal Variation in Water Resources Availability in Karnali-Mohana River Basin, Nepal

Vishnu Pd. Pandey, Sanita Dhaubanjar, Luna Bharati
International Water Management Institute (IWMI), Nepal Office

Contents

• Context
• Study Area
• Methodology
• Model Performance
• Spatio-Temporal Variation of Water Balance
• Summary

Context

• Huge untapped potential for WR development in Nepal
 – More in Western Nepal

Data source: DoE website + Planning documents

• Total Hydropower Projects (> 0.5 MW): 150 nos; 21,006.8 MW
• Storage: 19 projects (67 – 6,720 MW); All are planned/proposed

• Huge untapped potential for WR development in Nepal
 – More in Western Nepal

• A sound knowledgebase on spatio-temporal variability of WR may help informed decision-making
 – Hydrological models are useful for that purpose

• Well calibrated/validated hydrological models can
 – Characterize spatio-temporal variation in WR availability under current & future conditions
 – Be used for CC impact assessment on WR availability

• However, such studies are lacking in Western Nepal
Context – DJB Project

- **Project**: Digo Jal Bikas (DJB)
- **Goal**: Promote sustainable WRD&M in western Nepal
- **Duration**: 2016-2019
- **Funding**: USAID
- **Scale**: Basin (3 basins) & Local (3 pilot sites)

OBJECTIVES
- Generate knowledgebase
- Develop & apply tools/models/approaches
- Develop integrated WRD & M guidelines for policy & practice

Study Area: Karnali-Moahan (A=49,889 km²)

- **Topography**: 69-7726 masl
- **Soil**: 21 types (SOTER)
- **LULC**: 9 generic types
- **Rainfall variation**
- **Temperature variation**

We Expect Spatial Variability on WR availability within the basin

Methodology: Framework & Data

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description/Properties</th>
<th>Resolution/Period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEM</td>
<td>DEM</td>
<td>30m</td>
<td>ASTER-GDEM</td>
</tr>
<tr>
<td>Soil [Soil class & physical properties]</td>
<td>Vector data</td>
<td>ICIMOD (2010)</td>
<td></td>
</tr>
<tr>
<td>Rainfall [mm]</td>
<td>Observed</td>
<td>36 stations; daily, 1995-2013</td>
<td>DHM, Nepal; IMD, India</td>
</tr>
<tr>
<td>Temperature [°C]</td>
<td>Observed</td>
<td>22 stations; daily, 1995-2013</td>
<td>DHM, Nepal; IMD, India</td>
</tr>
<tr>
<td>Sunshine [hrs]</td>
<td>Observed</td>
<td>22 stations; daily, 1995-2013</td>
<td>DHM, Nepal</td>
</tr>
<tr>
<td>Wind speed [m/s]</td>
<td>Observed</td>
<td>5 stations; daily, 1995-2013</td>
<td>DHM, Nepal</td>
</tr>
<tr>
<td>Q [m³/s]</td>
<td>Observed</td>
<td>10 stations; daily, 1995-2013</td>
<td>DHM, Nepal</td>
</tr>
</tbody>
</table>

Methodology: SWAT set-up

- 111 sub-basins & 2,122 HRUs
- 36 P stations
- 22 T & RH stations
- 5 sunshine hours stations
- 7 stations for wind speed
Results/Discussion: Model Performance

10 Q Stations
- 3 in Seti
- 2 in Bheri
- 1 in Tila
- 1 in Mohana
- 3 in Karnali Main

Results/Discussion: Model Performance

Q360 – Outlet, Seti

Results/Discussion: Model Performance

Q270 – Outlet, Bheri
Results/Discussion: Model Performance

KARNAL-MAIN RIVER

Results/Discussion: Spatial distribution of WR

- P varies from 365 to 2,585 mm, with basin average of 1,335 mm
- Northern part receives less precipitation

Results/Discussion: Spatial distribution of WR

- AET varies from 17 to 835 mm (basin average = 489 mm)
• Higher % P is lost as AET in middle part of the basin; & less in the northern part;

• Sub-basin average Q (net water yield) varies from 7.3 m³/s to 2,292.2 m³/s
 • The cumulative flow increases when we move towards D/S

• Surface runoff - major contributor in net water yield
 • Lateral flow - 2nd major contributor in most sub-basins.
Results/Discussion: Temporal distribution of WR

- P & net water yield are high during rainy months (Jun-Sep) & AET also follows the same trend

Summary

- Performance of SWAT model for KarMo basin
 - Can reproduce reasonably the hydrological patterns, incl. spatio-temporal variability

- Spatial variation in water balance
 - P varies from 365 to 2,585 mm
 - AET varies from 17 to 835 mm
 - Runoff (net water yield) varies from 7.3 to 2,292.2 m³/s

- Temporal variation of water balance
 - P & runoff are high during rainy months (Jun-Sep) & AET also follows the same trend

Next Steps (Ongoing)

- Impact of Water Infrastructures
 - Hydropower Projects?
 - Irrigation Projects?

Impact of Climate Change

- Rainfall Change?
- Temperature Change?

Impacts

- Simulated results will be used for hydro-economic modelling (Ongoing)
 - Trade-off evaluation of WR Development pathways (likely)

- The model results are used by DoI
 - Irrigation Master Plan development

Acknowledgements: This study is made possible by the generous support of the American people through the United States Agency for International Development (USAID) under Digo Jal Bikas (DJB) project.

THANK YOU!
Results/Discussion: Spatial distribution of WR

- AET varies from 17 to 835 mm (basin average = 489 mm)
- Q260 (Seti)
 - AET = 28.9%
 - PER = 24.6%
- Q270 (Bheri)
 - AET = 35.7%
 - PER = 13.4%
- Q280 (Karnali Outlet, Chisapani)
 - AET = 35.8%
 - PER = 10.3%