Dear colleagues and friends of ICID,

As I write this message, I am in the midst of analyzing the flooding, rainfall, snowmelt and hydrographic data of a major agricultural watershed close to my home in Montreal. The Richelieu River which starts in the Green Mountains of Vermont and Adirondack Mountains of New York, feeds into Lake Champlain, passes through the province of Quebec and enters the St. Lawrence River about 50 km or so from Montreal. Since early April, the watershed has suffered from severe flooding and there is no let up in sight. Over 3,000 homes are flooded and damaged, and several thousand hectares of prime cropland are under water. The optimum time for seeding of crops is May 23-27, given our very short growing season. It is evident that farmers will be unable to seed their crops or will seed late. Crops will not achieve maturity, and consequently yields will be significantly reduced. I have visited the flood affected lands and am left aghast at how some of the world’s most productive lands and its agriculture are reduced to nothing at this point in time.

This situation of flooded cropland is equally devastating for hundreds of farmers in Manitoba, Canada and perhaps several thousand in the Mississippi basin of the US. No amount of money can replace the damage, misery, suffering and personal and emotional loss.

As President of ICID, I am acutely aware that many of our member countries are affected in worse ways annually during the monsoons, typhoons and hurricanes. And here I refer not just to India, Pakistan, China, Bangladesh, Indonesia and South East Asia, but also to countries such as Australia last year, and to Colombia at this very moment. I am even more aware that in many of these countries lives and jobs are lost, damage is permanent, families are uprooted, and the vicious cycle of poverty, misery and suffering is further entrenched.

It is obvious that the financial means to provide either complete structural or non-structural measures to flood proof villages, towns and watersheds are non-existent. We simply could not do it, even if we wanted. I am reminded of the enormous damage and destruction, and loss of life caused by the recent tsunami in Japan. Our Japanese colleagues and National Committee were deeply appreciative of the support and sympathy of the ICID family worldwide.

Flooding has plagued human civilizations for millennia. Floods and the resultant famines left indelible marks on civilizations. We must be concerned that despite our hydrological and technological advances, the question of floods and their impact on lives and property, and local, national and international food supplies remains unresolved.

Perhaps the time has come for the ICID fraternity to share experiences, lessons learned, and best practices from our collective actions and responsibilities of having to manage floods in our respective countries. I would be pleased to receive your comments on this topic, and to see whether a special session ought to be planned either for our Tehran Congress or at an upcoming IEC.

I close by thanking our Indian, French and Dutch National Committees for hosting me during their recent local and regional meetings. It was indeed an honour to participate in the deliberations and meet a wide cross section of experts. ICID is stronger because of such events, the breadth of the participants, and the richness of the dialogue.

I trust that you are making plans to attend the Tehran IEC and Congress, October 15-23, 2011. Our hosts, the Iranian National Committee are working vigorously to ensure that we have a very successful Congress, and I urge you to attend and support the National Committee. I look forward to seeing you in Tehran.

Yours truly,

Chandra A. Madramootoo
President, ICID
ICID Prepares for the 6th World Water Forum

The 6th World Water Forum (WWF6) will be held during March 2011 in Marseille, France. ICID is partnering with UNESCO in preparation of thematic Priority 2.2 on "Sustainable Development of Rainfed Areas". The forum is being organized under the auspices of the World Water Council. For full details of the forum, please visit: www.worldwaterforum6.org

ICID News 2011/2

Integrated Watershed Development for Sustainable Development of Rainfed Areas

For the greater part of the world, water issues is primarily a blue water issue, and large opportunities exist for management of rainfed areas, i.e. the green water resources in the landscape. Dr. Milan P. Visai, Director General, International Water Management Institutes and Project Director, ICRISAT India, shares his perspective on an integrated watershed development approach to increase crop yields - a focus in current areas.

Objectives

1. To improve the potential of current sustainable management approaches to increase crop yields, i.e. increase crop yields of rainfed areas through sustainable management of rainfall resources and increasing the potential of integrated watershed development approaches.

2. To discuss the potential of integrated watershed development approaches to increase crop yields.

3. To discuss the potential of integrated watershed development approaches to increase crop yields.

4. To discuss the potential of integrated watershed development approaches to increase crop yields.

5. To discuss the potential of integrated watershed development approaches to increase crop yields.

6. To discuss the potential of integrated watershed development approaches to increase crop yields.

Key outcomes

1. An integrated watershed management approach to increase crop yields.

2. An integrated watershed management approach to increase crop yields.

3. An integrated watershed management approach to increase crop yields.

4. An integrated watershed management approach to increase crop yields.

5. An integrated watershed management approach to increase crop yields.

6. An integrated watershed management approach to increase crop yields.

Areas of consideration

1. Integrated watershed development approaches to increase crop yields.

2. Integrated watershed development approaches to increase crop yields.

3. Integrated watershed development approaches to increase crop yields.

4. Integrated watershed development approaches to increase crop yields.

5. Integrated watershed development approaches to increase crop yields.

6. Integrated watershed development approaches to increase crop yields.

Key concepts

1. Integrated watershed development approaches to increase crop yields.

2. Integrated watershed development approaches to increase crop yields.

3. Integrated watershed development approaches to increase crop yields.

4. Integrated watershed development approaches to increase crop yields.

5. Integrated watershed development approaches to increase crop yields.

6. Integrated watershed development approaches to increase crop yields.

Implementation

- An integrated watershed management approach to increase crop yields.

- An integrated watershed management approach to increase crop yields.

- An integrated watershed management approach to increase crop yields.

- An integrated watershed management approach to increase crop yields.

- An integrated watershed management approach to increase crop yields.

- An integrated watershed management approach to increase crop yields.

Summary

The integrated watershed management approach to increase crop yields is a holistic approach that integrates the management of rainfall resources and the management of green water resources in the landscape. It is based on the principles of integrated watershed management (IWM), which recognizes the interdependence of water, soil, and vegetation as key components of the landscape.

Conclusion

The integrated watershed management approach to increase crop yields is a promising approach to increase crop yields in rainfed areas. It requires a collaborative approach involving all stakeholders, including farmers, government agencies, and non-governmental organizations. The approach is also scalable and can be implemented at different scales, from small catchments to entire river basins.

References

Tehri Dam: An Indian Success Story

Indian Government, during last five decades has made massive investment in development of water resources through multipurpose river valley projects. Tehri Dam is one such modern water storage project. VPH Larry D. Stephens, Executive Vice President, U.S. National Committee on Irrigation and Drainage (USCID) and USSD Executive Director during his visit to the ICID Central Office, New Delhi in last January also took time to visit Tehri Dam. Mr. Stephens shares his impressions of this civil engineering marvel.

In 2009, Tehri Dam received an ICOLD Award as an International Rockfill Dam Milestone Dam. An earth and rockfill structure, Tehri Dam is 260.5 meters high and is located on the Bhagirathi River in the Himalayan Mountains northeast of New Delhi, India. Construction began in 1978 and was completed in 2006. The construction cost was about US$1 billion. Tehri Dam Project is a joint venture of the Government of India and the state of Uttar Pradesh. The Central Water Commission (CWC) in New Delhi was the Project Civil Works Design Consultants.

The reservoir created by Tehri Dam has a live capacity of more than 2.6 billion cubic meters (3.54 billion cubic meters as gross). The multi-purpose project includes peaking hydropower, water for irrigation and water supply for several rural and urban area, including India’s capital city of New Delhi, and flood control. In addition to the stabilization of 604,000 hectares of existing irrigable areas, about 270,000 hectares will receive water for additional irrigation; 270 million gallons per day of drinking water will be provided for both rural and urban needs.

The Tehri Dam powerplant currently has 1,000 MW capacity, and in the Stage II Pumped Storage Plan, an additional 1,000 MW of capacity will be installed. With the recent completion of the downstream Koteshwar Dam, the Tehri Hydropower Complex will add an additional 400 MW of capacity to the grid. Last January, I had an opportunity to visit Tehri Dam and Powerplant and Koteshwar Dam, accompanied by Engineer M. Gopalakrishnan, the Secretary General of the International Commission on Irrigation and Drainage. Gopalakrishnan was a design engineer with the CWC and was directly involved with design of Tehri Dam features. He proved to be an excellent guide, showing me a number of features of the dam including some novel concepts, like galleries through the core of the embankment dam, and two shaft spillways, 12 meters in diameter and nearly 200 meters deep, each handling flows of about 1,900 m³/sec. The shaft spillways augment the chute spillway which can handle about 5,500m³/sec. We visited the Tehri Dam Powerplant, which was constructed in the hill side on the left abutment of the dam, since there was not enough room in the canyon below the dam to include the Powerplant. I was quite impressed with Tehri Dam and powerplant, noting especially the high level of maintenance. We also visited the under construction Koteshwar Dam. We watched as the diversion tunnel gates were being closed, an unique opportunity to see the newly completed upstream dam face — project engineers told us that the re-regulating reservoir, just downstream from Tehri Dam, would fill within three days. The highlight of the Tehri Dam trip was the opportunity to visit the office of R.S.T. Sai, Chairman and Managing Director of Tehri Hydro Development Corporation Ltd. He was obviously proud of the Project and the ICOLD recognition. The award is prominently displayed in his office.

My India visit included a very positive meeting with the Indian Committee on Large Dams. We discussed the USSD bid to host the 2013 ICOLD Annual Meeting and INCOLD’s plans to bid for the 2014 Meeting. I reviewed USSD preparatory activities and showed the video we presented during the 2010 ICOLD Meeting in Hanoi. The INCOLD officials were quite supportive of our plans to host in 2013; they suggested that INCOLD and USSD make plans for a MoU to further technical exchanges between the two National Committees.

VPH Larry Stephens can be contacted at <stephens@uscid.org>.
Challenges Facing Groundwater Management

24th European Regional Conference of ICID was held during March at Orléans, France. The theme of the conference was ‘Groundwater Management’ and gathered 300 participants from 20 countries. More than 100 papers were presented and discussed in two plenary sessions and six parallel topics. Sami Bouarfa, President of the Technical Committee of AFEID provides summary and key highlights of the event.

Of the 300 million ha of irrigated land in the world, some 113 million ha presently depend on groundwater accounting for 25% of the total irrigation water withdrawals. The overall groundwater extraction has gone up from 100 million km3 in 1950 to about 1000 km3 in 2000. Of which 70-75% extraction goes for agriculture. It is estimated that groundwater-based systems generate $210-230$ billion of revenue and are economically and socially more efficient than surface water systems. The low costs of installing and operating tubewells along with the resulting groundwater revolution have been the main reasons for this rapid growth. Groundwater irrigation covers the major irrigated area in France; half of the irrigated areas in South-Asia and is crucial in North-Africa. But, unlike surface water, groundwater is not easily measurable and manageable. In most cases it is used by a large number of independent users, including farmers, who have direct access to water. The same goes for diffuse pollutions. The complexity of aquifers functioning on large time and space scales hampers collective action as well as the perception of the impacts on the environment.

Despite these challenges, ICID so far has not focused enough on issues related to groundwater. The Conference hosted by AFEID is therefore of significance. The Beauce region is an important region for grain production in France. Here farmers have tested an innovative volumetric management system to manage the groundwater. A return from experience by stakeholders and users of the Beauce groundwater was presented and discussed.

President Madramootoo in his keynote address spoke on global trends in the usage of the groundwater reserves and resulting pressures from overexploitation. Dr Margat, a world-renowned hydrogeologist presented key data on the usage of the groundwater for irrigation, noting its rapid development during the past 50 years and the difficulties in managing a collective resource for which thousands of individuals have liberal access. Pr Ghislain de Marsily, an eminent hydrologist and member of the French Academy of Science, presented a case study on aquifer management in the French region of Marais-Poitevin which calls into question the necessity for extensive knowledge of water resources for its management. Dr. Marcel Kuper, on behalf of Dr. T Shah, senior fellow at IWMI described how communities in India have responded to aquifer development and overexploitation, noting two distinct responses based on the abundance and accessibility of water resources. Pr B Barraqué, political scientists and economist with the French Centre International de Recherches sur l’Environnement et le Développement, described the evolution of water management in Europe, as the status of groundwater resources move from a thing that is privately owned to a common resource under Public Trust.

Key Issues

- Irrigation withdrawals are causing the imbalance of groundwater in the Mediterranean region. The groundwater quality has deteriorated due to very high nitrate concentrations (sometimes higher than 400 mg/l).
- While conjunctive use of groundwater in irrigated schemes is desirable, it can also be the source of new inequities between those who can invest in a borehole and other farmers. It would therefore be important to know if a collective appropriation of groundwater and its management is appropriate through allowance policy, collective drillings.
- There are a few cases of successful groundwater management implementation and also a few cases of uncontrolled “tragedies of the commons.”
- The Water Framework Directive 2000/60/CE (WFD) requires Member States to protect, enhance and restore waters with the ultimate objective of achieving “good status” for both surface and groundwater bodies. While “good quantitative status” is clearly defined in the WFD, this is not the case for the complex “good chemical status.” So the lessons learned in the last 10 years were presented.

- Economic approaches of groundwater management discussed were (i) dynamics of, economic activities and groundwater resources, (ii) assessing and comparing the economic cost and/or benefits of different groundwater management options, and (iii) designing and testing groundwater regulation instruments such as prices, (abstraction/pollution) charges or taxes and markets of water rights.

- Groundwater pollution is not only the responsibility of agriculture with a highly variable ratio between agricultural/non-agricultural pollution sources, but also other users. It is thus necessary to involve all the parties to find solutions at the local scale. The types of action (preventive like local arrangements between water suppliers and groups of farmers or curative like water treatment or alternative resource) should be analysed in context to technical and economic criteria.

Delegates at the field visit organized by the agricultural chambers of the Beauce region.

The proceedings/presentations of the conference are accessible through the website: http://www.groundwater-2011.net/program_and_proceedings. Sami Bouarfa can be contacted at <sami.bouarfa@cemagref.fr>.
What Does Efficient Irrigation Really Mean?

The South African National Committee hosted the 2010 SANCID Symposium in Upington in the Northern Cape. The theme for the symposium was “Efficient water use for food production.” A total of 26 papers were presented on sub-themes of irrigation scheduling, soil nutrient management, irrigation strategies, water management at catchment scale, irrigation efficiency, water productivity and modelling water use. Dr Richard Stirzaker, Principal Research Scientist, CSIRO, Canberra was the keynote speaker and gave a very interesting presentation on the perception of efficient irrigation. He conveyed the following message to the delegates:

Depending on how you look at things, the task of feeding the world in 2050 can seem hopeless. Population increases at 200,000 individuals per day, water supplies are diminishing, land is degrading, food is diverted to biofuels and diets are changing to consume more water per person. Can we really double food production when the macro indicators are all going in the wrong direction?

But if you look at the business of turning water into food step by step from the small scale upwards, things might not look quite so bleak. Let’s start with 100 liters of water in the dam, which we want to turn into food on a farm. When the water is delivered to the farm through open unlined channels, 20% of the water can easily be lost through evaporation and channel leakage before reaching the farm gate. On reaching the farm, the water may be stored in a small dam before being moved around the farm in earthen canals. Evaporation from the dam and leakage from the farm canals means only 70% of the remaining water reaches the edge of the field.

Then we apply this water to the crop by flooding the field. Sometimes water runs off the far end of the field and it is common for more water to infiltrate into the top end of the field and drain below the roots. We may only get 60% of the available water into the root zone, of which 50% evaporates from the soil surface. Do the calculations - (0.8% x 0.7% x 0.6% x 0.5%) and we see only 17 liters of our original 100 liters are transpired by the plant.

There are several points here where we can intervene. Let’s suppose we can get 95% of the water to the farm gate and pipe the remaining 95 liters of water around the farm to each field, again at 95% efficiency. Five more liters are lost somewhere on the farm and the remaining 90 liters reaches the sprinklers in the field. We manage to get 85% of the 90 liters stored in the root zone, leaving 77 liters available for the crop to use of which 65% of the water was transpired and 35% evaporated. The amount of water used by the plant is now 65% of 77 liters, or 50 liters (0.95% x 0.95% x 0.85% x 0.65%) of the 100 liters that left the dam. Moving from a poor system to a better one can give us three times the amount of useful water – from 17 to 50 liters. There is a caveat here because not all the inefficiencies result in a net loss of water. Water draining below the root zone of crops reaches the ground water and may find its way back to the river, or be pumped up and reused by another irrigator.

A well grown crop can produce 1 kg of grain from a thousand liters of water, whereas a poorly grown crop would be unlikely to be one third as productive. We have seen above that we can increase the water transpired three times (from 17 to 50 liters) and with the right kind of investment in farmer training and support we could increase the crop productivity of water threefold as well. Putting the engineering and the biological sides together gives us 3x3 or a nine fold improvement. This is not to say that the ninefold increase is easily attainable – just that it is within reach and is in fact being achieved in bits and pieces all over the world. The question is ‘why do we not learn much faster?’

In order to achieve higher water use efficiency, new technologies must be coupled with the development of new institutions that are capable of managing water effectively. It is necessary to use adaptive management to deal with the complexity by involving professionals from many disciplines and through the process of ‘learning by doing.’ Which in turn shall be based on simple monitoring programs that include observation, evaluation, and revision of decisions and projections to sustain continuous improvement of water use efficiency in agricultural systems.

When we look again at the big picture, the need for new institutions and a trans-disciplinary approach to managing water at appropriate scales is clear. But at the other end of the spectrum, many small by gains can be made through systematic application of adaptive learning, based on the use of simple tools. Some examples of this in practice can be seen at http://www.thescientistsgarden.com and at http://www.youtube.com/watch?v=Cyj6BzdUllI. To double food production by 2050, we will have to double our efforts at both ends of the water management spectrum.

Dr Richard Stirzaker is the winner of ICID WatSave Technology Award 2003 and he may be contacted: <Richard.Stirzaker@csiro.au>. Thanks are due to VPH Felix Reinders, Chairman, SANCID, South Africa for facilitating publication of this article.
Believe in infinite possibility.

Collect flow data in areas previously thought immeasurable

Whether a shallow stream, an icy river, or the depths of the darkest blue ocean, SonTek/YSI's acoustic Doppler systems measure water flow in areas you might have thought were impossible:

- Reversing flow
- Rapid and complex changes
- Tidal influence
- Under ice

Backed by a professional support staff with broad expertise in fluid dynamics, hydrology, oceanography and civil engineering, it's easy to see why we embody our motto - Sound Principles. Good Advice.

Questions? E-mail: inquiry@sontek.com or call +1.858.546.8327
See our systems in action! youtube.com/SonTekYSI
Integrated Watershed Development for Sustainable Development of Rainfed Areas

For the greater part of the world, water stress is primarily a blue water issue, and large opportunities exist in the management of rainfed areas, i.e., the green water resources in the landscape. Dr. Suhas P. Wani, Principal Scientist (Watersheds) and Project Coordinator (IWMPs), Resilient Dryland Systems, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India explains how an integrated watershed development approach can increase the crop yields 2 - 4 times in rainfed areas.

Globally, 80% (1.25 billion ha) of arable land is rainfed with varying importance with the region (95% in sub-Saharan Africa, and 60% in South Asia) and produces most food for poor communities. These areas are the hot-spots of poverty, malnutrition, severe water scarcity, prone to severe land degradation, and have poor infrastructure.

Agriculture is the world’s second largest consumer of the water after the forestry, and is also a cause of depleting soil quality. Growing need to produce more food, feed as well as biofuel for energy means increasing pressure on scarce water and land resources. Simultaneously, the per capita availability of land and freshwater has been declining since 1950 due to increased human population. These interlinked and multiple challenges can’t be solved with business as usual approach, without enhancing the efficiency of water, land and other natural resource use, without crossing the safe operating space for the humankind.

The current global population that has blue water stress is estimated to be 3.17 billion and expected to reach 6.5 billion in 2050. If both green and blue water are considered, the population currently experiencing absolute water stress is only a fraction of projected (0.27 billion), and will only marginally exceed today’s blue water stressed in 2050. Large parts of China, India, and sub-Saharan Africa are conventionally water scarce, but still have sufficient green and blue water to meet the water demand for food production.

Large yield gaps with farmers’ yields being about 2 to 4 times lower than the achievable yields for major rainfed crops are observed in Asia, Africa and CWANA (Central and West Asia and North Africa) regions. There is an urgent need to develop a new paradigm for upgrading rainfed agriculture and the business as usual approach can no longer achieve the goal of food security. Vast scope exists to unlock the potential of rainfed agriculture through sustainable management of natural resources through integrated watershed management (IWM) approach. The IWM approach provides a framework for unlocking the potential of rainfed agriculture to improve livelihoods through knowledge-based and participatory method for sustainable intensification with increased efficiency of natural resource use.

The IWM consortium model has produced multiple benefits such as increasing crop production by 2 to 4 folds, doubling of the family incomes, increasing groundwater availability, reducing runoff to less than half and soil loss by 1/7th, conserving belowground and above-ground biodiversity, building social and institutional capital in the benchmark watersheds in India, Thailand, Vietnam, China and Philippines. The Integrated Watershed Management approach in Kothapally is revolutionizing agricultural productivity and incomes. The crops yields have increased by two to four folds as compared to the best land crop yields and have bridged the yield gap substantially.

The scaling-up of the IWM is taken up by the Government of India and other countries in Asia. Through South-South collaboration, the IWM approach is being evaluated in southern and eastern Africa through ASARECA (Association for Strengthening Agricultural research in Eastern and Central Africa).

Dr. Suhas Wani can be contacted at <s.wani@cgiar.org>.
In a few months from now the Iranian National Committee on Irrigation and Drainage (IRNCID) will host the ICID’s 21st Congress on Irrigation and Drainage, 62nd International Executive Council at the magnificent city of Tehran. The theme of the Congress is “Water productivity towards food security.” The 8th International Micro Irrigation Congress on the theme “Innovation in technology and management of micro irrigation for enhanced crop and water productivity”; Special session on modernization of water management schemes; Symposium on climate change impacts on soil and water resources, History seminar and many other International meetings like FAO organized session on modernization of Irrigation, special session on modernization and water management experiences in Australia, technical exhibition of irrigation and drainage related equipments/products. ICID Office in New Delhi has received large number of technical papers for the Congress. We hope delegates will be benefited by the variety of International events, technical exhibition and post conference tours.

IRNCID is fully prepared to make this event the most successful and memorable. A special strategic high level council with the Chairmanship of Minister of Energy, an Executive Board has been setup to steer the technical, organizational, financial, promotional activities of the event. IRNCID fully ensures the comfortable stay and safety, of all the honorable delegates during the entire period of the event.

Organization of technical and sightseeing tours to see historical monuments, beautiful coasts of Caspian Sea in the North, Historical and Modern Water Structures of Khuzestan in the South, as well as, tours to historical cities of ISFAHAN and SHIRAZ for the honorable guests. Accompanying persons shall also enjoy themselves in their free time by participating in the attractive Tehran tours.

The Executive Board has facilitated issuing visas with the cooperation of Ministry of Foreign Affairs (MFA). The participants are requested to fill the registration form and visa application form by accessing the Congress website. We encourage delegates to initiate visa related formalities at the earliest. The Executive Board has made agreements with many reputed hotels with reasonable prices and hope that participants’ will find it satisfactory. Information of such hotels can be found on the Congress Website.<http://www.icid2011.org>, or write to E-mail: <irncid@gmail.com>.

The Congresses and various meetings will be held in the magnificent, modern and fully equipped venue in Tehran. The venue has glorious halls, modern audio – visual equipments, and simultaneous translation facility. The entire organization of the event is handled by a high level internationally experienced organizer.

IRNCID is eagerly looking forward to receiving delegates from all across the world and to enjoy the Iranian hospitality in a friendly atmosphere, as well as, to experience technical, social and cultural heritage of Iran. For further information, please refer to the Congress Website.<http://www.icid2011.org>, or write to E-mail: <irncid@gmail.com>.

The 3rd ICID African Regional Conference will be held during 29th November to 5th December 2011 at Bamako, Mali. The theme of the Conference is ‘Food security in Africa and climate change: Improve Irrigation and drainage contribution’. The main objectives of the Conference are - (i) To share documented experiences and knowledge on climate change and how to scale up experiences; (ii) To suggest strategies for improving water productivity; and (iii) To advise policy makers on how irrigation could contribute to food security in Africa. Following are the sub-themes:

Theme 1: Effects of climate change on the development of irrigation and drainage in Africa, **Theme 2:** Policies and strategies to improve the contribution of irrigation and drainage to food security in Africa under climate change context, and **Theme 3:** Water use productivity in agriculture and the challenges of climate change. The last date for receipt of the abstracts (500 words) is **15 June 2011**; and for submission of full length papers is **15 August 2011**. For more information please contact: Conference Secretariat, E-mail: secretariat3.craf@amid-mali.org or gueyekeita@yahoo.fr, Tel: +22320287521 / +22320227192; website: http://www.amidmali.org.

Editor: Dr. S.A. Kulkarni, **Executive Secretary,** **DTP:** K.D. Tanwar, ICID Central Office, New Delhi, India
Tel: +91-11-2611 6837/5679, E-mail: icid@icid.org